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Left Eigenstructure Assignment 
via Sylvester Equation 

Jae Weon Choi* 
(Received December 17. 1997) 

An effective and disturbance suppressible controller can be designed by assigning a left 

eigenstructure (eigenvalues/left eigenvectors) of a system. In this note, a novel left eigenstructure 

assignment scheme via Sylvester equation is proposed. The biorthogonality property between the 

right and left modal matrices of a system is utilized to develop the scheme. 
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1. I n t r o d u c t i o n  

Eigens t ruc tu re  ( e i g e n v a l u e s / e i g e n v e c t o r s )  

assignment via linear state feedback control in a 

linear multivariable system has been widely used 

as a control scheme in mode decoupling of the 

flight control system and vibration suppression of 

flexible structures. 

The specified effect of  the controller is achieved 

by assigning a certain set of eigenvalues and an 

associated set of eigenvectors to the c losed- loop 

system. The eigenstructure assignment algorithm 

can be divided into two groups; namely, the right 

eigenstructure (eigenvalues/right eigenvectors) 

a s s ignment  and the left e i g e n s t r u c t u r e  

(eigenvalues/letl eigenvectors) assignment. Their 

roles in designing a control system are distinctly 

different. 

Consider a linear time invariant multivariable 

controllable system 

2 (t;, = A x  (t)  ~ f lu  (t)  + E l ( t )  

= A x ( t ) + ~ b k u k ( t ) + ~ e f f , ( t ) ,  (1) 
t e = l  / = 1  

u ( t ) = K x ( t  ) (2) 

where ( i ) x ~ R  x, u ~ l ~  'n, and f c R "  denote 

the state, control, and disturbance vectors, respec- 

tively: (it) A ,  13, E,  and K are real constant 
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matrices of appropriate dimensions; and (iii) 

rank B =  m#=0. 

The response of the given system due to control 

input u (t) and disturbance f ( l )  with zero initial 

conditions is represented using the modal 

matrices by 

x ( t )  : :  (v) + 

N m t 

i = I 1, k = I J { I  

where O and f are the right and left modal 

matrices of  the given system, respectively, and A 

is the diagonalized eigenvalues matrix. Note, from 

Eq. (3), that the response to disturbance can be 

eliminated if the columns(r of left modal 

matrix U are orthogonal to the columns(ez) of 

the disturbance input matrix/~2. Note also that the 

control eltbrt is effectively transferred (that is, the 

manipulation is achieved with small control 

eflbrt), if the left eigenvectors are parallel to the 

columns(hk) of the control input matrix /3. 

Therefore, for both effective control and distur- 

bance suppression, it is desired that the left 

eigenvectors of the system lie simultaneously (at 

least, in the least square sense, if possible) in the 

space orthogonal to the columns of the distur- 

bance input matrix E and parallel to the columns 

of  the control input matrix 13. Then, the corre- 

sponding system can be manipulated with small 

effort without being disturbed by the disturbance 
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input. Therefore, it can be said that the left eigen- 
structure of a system plays an important role in 
designing an effective and disturbance suppress- 
ible controller. 

From the above equations, the right eigen- 
structure (,~z, qS,.) assignment is used to solve 
mode decoupling problems (Andry, Shapiro, and 
Chung, 1983; Kang and Lee, 1992; Sobel and 
Cloutier, 1992; Siouris, Lee, and Choi, 1995; Choi 
et al., 1996), and to design a controller for the 
vibra~:ion suppression of flexible structures(Gar- 
rard and kiebst, 1985; Song and Jayasuriya, 
1993). On the other hand, control effectiveness 
and disturbance suppressibility of a system 
depend mainly on the left eigenstructure (Ai, 9,) 
of the system (Zhang, Slater, and Allemang, 1990; 
Kim and Junkins, 1991; Choi et al., 1993a, 1993b, 
1994, 1995). Zhang et al. (1990) used a left 
eigenstructure to suppress undesired inputs, 
through orthogonalizing left eigenvectors to dis- 
turbance input matrix of the system of uniform 
flexible beam vibration control problem. Kim and 
Junkins(1991) utilized the left eigenstructure to 
improve the controllability of a flexible structure 
system through placing actuators at optimal loca- 
tions. However, Zhang et al. did not take into 
account the control problems; and Kim and Jun- 
kins ,:lid not consider the disturbance suppression 
problems. Choi et al. (1993a, 1993b, 1994, 1995) 
proposed a left eigenstructure assignment method 
which considers the two problems simultaneously 
by using a null space approach(Choi et al., 

1995). Recently, Choi(1998) also proposed a 
novel simultaneous assignment methodology of  
right and left eigenstructures via the null space 
approach. In the paper, the method was success- 
fully applied to the design of a stability augmenta- 
tion system (SAS) with closure of the roll attitude 
loop for the linearized lateral dynamics of an k 

1011 aircraft. 
At. algorithm for state feedback pole assign- 

ment using Sylvester equation was introduced in 
(Bhattacharyya and deSouza, 1982) and used in 
(Cavin Ill and Bhattacharyya, 1983) to have low 
eigenvalue sensitivity for the closed-loop system, 
and the problem of right eigenstructure assign- 
ment via Sylvester equation has been treated by 

several authors(Keel and Bhattacharyya, 1985; 
Tsui, 1987; Duan, 1993; Kim and Kum, 1993; 
Syrmos and Lewis, 1993, I994; Wimmer, 1994). 
Keel and Bhattacharyya (1985) described a proce- 
dure for the design of a dynamic compensator that 
stabilizes the closed-loop system and causes the 
closed-loop system eigenstructure to be robust in 
the sense of making the eigenvector set maximally 
orthonormal. The authors extended the algorithm 
introduced in Refs. (Bhattacharyya and deSouza, 
1982; Cavin I11 and Bhattacharyya, 1983), to the 
output [i~edback case and place eigenvalues in a 
region of the complex plane. Tsui (1!;)87) summar- 
ized the existing solutions to Sylvester equation, 
and also presented an attractive analytical and 
restriction-free solution with explicit freedom. 
Duan (1993) proposed two new simpler solutions 
to Sylvester equation than that of Tsui, and 
presented a complete parametric approach for 
right eigenstructure assignment in linear systems 
via state feedback based on his proposed solu- 
tions, Syrmos and Lewis(1993) solved the prob- 
lem of eigenstructure assignment by output feed- 
back by using two coupled Sylvester equations. In 
Kim and Kum(1993), the authors introduced an 
iterative right eigenstructure assignment via 
Sylvester equation to design a small gain control- 
ler. A homotopy concept was adopted to develop 
the scheme. Syrmos and Lewis(1994) also 
presented necessary and sufficient conditions in 
terms of a bilinear Sylvester equation for stabiliz- 
ing and eigenstructure assignment by output feed- 
back. 

However, the problem of left eigenstructure 
assignment via Sylvester equation could not be 
solved directly because of the inherent structure of 
the Sylvester equation. In this note, a novel left 
eigenstructure assignment scheme via Sylvester 
equation is proposed. The whole procedure is 
attractively simple to use in designing a left eigen- 
structure of a system. The simplicity and useful- 
ness of the presented method is illustrated by a 
numerical example. 

2. Sylvester Equation 

Consider Eq. (1) in section I. l fa  constant real 
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state feedback(Eq. (2)) is applied to Eq. (1), the 
closed-loop system becomes 

( t )  = ( A  + B K )  x ( l )  + E l ( t )  (4) 

and corresponding right and left eigenvalue prob- 
lems are defined by 

( A + B K )  r : right (5) 
( A  + B K )  rr162 : left (6) 

where ~bi and ~b~ are the right and left 
eigenvectors, respectively, corresponding to the 

eigenvalue Ai. 
The central constraint imposed in the 

eigenvalue assignment problem is to determine 
the gain matrix K that results in a prescribed set 
of eigenvalues. Note that K is an m • N dimen- 
sional matrix; it is evident that the problem is 
underdetermined, and therefore for controllable 
systems, an infinity choices of gain matrices exist 
for given eigenvalue locations. We could choose 
N X ( m - l )  parameters arbitrarily for N pre- 
scribed eigenvalues. 

The pole placement algorithm proposed in 
Cavin III and Bhattacharyya (1983) introduces the 
parameter vector h ~ r  C m defined by 

h i =  Kq~i (7) 

Then Eq. (5) is put in the form of Sylvester 
equation: 

( A  - A~I) ~ = - B h ,  (8) 

or, in matrix form, Eq. (8) is a generalized 
Lyapunov equation known as Sylvester equation, 

A g~ -- ~ A  - -  -- B H  (9) 

where g~= [q51, ~b2, " ' ,  qSu], A = d i a g  [fl~, f12, " ' ,  

AceS, and H = [hl ,  h> "", hul .  
The pole placement scheme based on Sylvester 

equation( Eq. (8) or (9)) can be summarized as 
follows: For given set of A, B matrices, and for 
a prescribed A matrix, we can choose a parameter 
matrix H and solve for q) from Eq. (9) ; Then, we 
can solve for K from the linear system (which is 
simply the matrix version of Eq. (7)). 

K ~ = H .  (10) 

In essence, the advantage of "guessing A and 
H"  instead of "guessing K"  is that the exact 
prescribed eigenvalue positions are guaranteed if 

we specify A and choose appropriate H. The H 
matrix generates (through the solution of Eq. (9) 
for A specified) all infinity of achievable 
eigenvector matrices (Junkins and Kim, 1993). 

Note, from inversion of Eq. (8), that the closed 
- loop eigenvectors corresponding to given A~ and 

h~ are simply 

r  - ( A - / ~ i I )  1Bhl  (ll)  

Thus, if the closed-loop eigenvalues(,~) are dis- 
tinct from their open-loop positions, the columns 
of  H directly generate all possible corresponding 
closed-loop eigenvectors. 

In case of right eigenstructure assignment, un- 
fortunately, an arbitrary choice for the complex 
H matrix does not usually generate an attractive 
set of closed-loop eigenvectors; occasionally the 
resulting eigenvectors are so poorly conditioned 
that computing an accurate gain matrix K from 
Eq. (10) is not possible. 

Since an arbitrary selection of H is not appro- 
priate, we had better consider choices which have 
a high probability of generating attractive gain 
matrices. An attractive algorithm results if we 
seek the H matrix which makes the closed loop 
modal matrix lie as close as possible to a pre- 
scribed, well-conditioned matrix. Notice that, if 
we select some target set of well-conditioned 
closed-loop eigenvectors 

42, ..., t z) 

which is much easier than choosing H matrix, 
considering physical information of O, then, we 
can use Eq. (8), or equivalently Eq. (9), to solve 
for the /Tr that most nearly(e, g., in the least 
square sense) produces the desired eigenvectors 
~ .  Upon substituting this solution for the H 
matrix and re-solving Eq. (9) for the admissible 
eigenvector matrix ~O, we will find g)=# ~, exactly, 
with the degree of approximation being problem 
-dependent. The resulting O matrix lies as near 
as possible (i. e., in the least square sense) and is 
typically well conditioned. The gain matrix K 
calculated from solution of Eq. (10) with ~O and 
/ t  will, however, place the eigenvalues exactly, to 
within arithmetic errors. 
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3. Left Eigenstructure Assignment via 
Sylvester Equation 

Consider the left eigenvalue problem of Eq. 

(6). The equation can be expressed by the follow- 

ing Sylvester equation: 

A r~Va - ~aA = - K r  BrtFd. (13) 

Our objective is to find the feedback gain matrix 

.~ that the closed loop eigenvalues are achieved 

exactly and the desired left eigenvectors are as- 

signed to the best possible set of eigenvectors, at 

least, in the least square sense. However, the 

matrix K and the desired nonsingular left modal 

matrix grd in the right hand side of Eq. (13) can 

not be parameterized by another matrix such that 

H in Eq. (9) because of the inherent structure of 

the right hand side of Eq. (13). Hence, the left 

eigenstructure can not be assigned by direct appli- 

cation of Eq. (13). 

Now, we reformulate Eq. (13) to be par- 

ameterized by the following procedures, and then 

the reformulated equation can be used to a left 

eigenstructure assignment problem. Eq. (13) can 

be rewritten by postmultiplying ~a ~ in both sides 

as follows: 

A r - / f f d A  ~a-~ = - K r B  r (14) 

Premultiply Eq. (14) by ~2 ~ and then take trans- 

pose in both sides to get 

A {lre T -  ~o'e T A = -  BK{F2  r. (15) 

Then, the matrices K and ~e - r  ( : = F )  in the right 

hand side of Eq. (15) can be parameterized by 

P i = K) ' , . ,  ( 16 )  

and Roman (15) can be rewritten by 

A E - F A =  - B P  (17) 

where: ~, is the i - th  column vector of the matrix 

F ,  and P =  [p,, ./)2, " " ,  /)N]" 

Note that the right modal matrix ~ in Eq. (9) 

is replaced by /"(or  grd-r) in Eq. (17) as a target 

left modal matrix. A left modal matrix of a system 

can be assigned to the desired one, at least, in the 

least square sense, guaranteeing the desired closed 

- loop  eigenvalues to be achieved exactly using the 

conventional Sylvester equation after some matrix 

manipulations. 

From the above facts, we obtain the following 

algorithm for a left eigenstructure assignment of a 

given controllable system. 

Algorithm." 

�9 Step 1: Choose the diagonalized desired 

c losed- loop spectrum A and the desired nonsin- 

gular left modal matrix ~a. 

�9 Step 2: Calculate the matrix F ( =  gr2r) and 

take this matrix as a target left modal matrix. 

�9 Step 3." Calculate the parameter matrix p as 

follows: 

P = -  Bqf ( A F -  F A )  . 

where / ~  denotes the pseudo-inverse of matrix 

B. 
�9 Step 4." Solve the Sylvester equation(Eq. 

(17)) for the left eigenstructure assignment prob- 

lem with the matrix p calculated in Step 3 to get 

the achievable matrix F~. That is, we solve the 

following Sylvester equation for Fa: 

A F~ -- F~A = - B P .  

�9 Step 5." Calculate the feedback gain matrix 

as follows: 

K = PF21. 

�9 Step 6." Calculate the achievable left modal 

matrix qra as follows: 

~ = F ~  -T. 

Remarks:  

1) In Step 1 of the algorithm, the desired left 

modal matrix ~a can be determined to have the 

specified control effectiveness and disturbance 

suppressibility in order to obtain an effective and 

disturbance suppressible controller. A procedure 

to determine the desired left modal matrix gr a is 

given in Choi et al., (1995). The characteristics, 

control effectiveness and disturbance suppres- 

sibility, of the system are determined by the 

direction of each column vector of the designed 

left modal matrix ~a. 

2) In Step 2, if the desired left modal matrix ~Fa 

is close to singular, the algorithm using singular 

value decomposit ion(Junkins and Kim, 1993) is 

recommended to improve the accuracy when 
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calculating the pseudo inverse of the matrix. 
3) In the algorithm, if the rank of control input 

matrix B (that is, the number of independent 
control actuators) is increased up to the rank of 
system matrix A,  the desired left eigenvectors as 
well as the desired eigenvalues are exactly 
achieved. 

4. A N u m e r i c a l  E x a m p l e  

Consider a third order two-input continuous 
controllable linear system with a disturbance: 

2 ( t )  - - A x ( l )  + B u  (t)  + E f  (t)  

l~ [!il [!1 = o o x ( t ) +  u ( t ) +  f ( t ) .  
- 2  1 

Let the desired real distinct spectrum be A--d iag  
E-2,  - 3 ,  - 4 ] ,  and the desired left modal matrix 

~d be 

~F~= - 1 , 
0 

where ~a is determined according to the guide- 
line described in Choi et al,, (1995) to have the 
specified control effectiveness and disturbance 
suppressibility. Normalized matrix ~ o r  using 
( r 1 6 2  = &j )  

--0.9864 0.9487 --0.9045] 
/Fg~ --0.1644 0.3162 0.3015/. 

l 

0 0 0.3015J 

Then, the matrix F is obtained by 

i o 333 o33  !] 2 
F : -  _12 --3 

and the parameter matrix /9 is obtained in the 
least square sense by 

/ F6.3333 12.3333 ~61] 
P = L  0 - 3  Q 

Now, we obtain the matrix Fa by solving the 
Sylvester equation in Step 4 as follows: 

0 278 06  3i] 
/ ' a = /  1.0566 2.0500 . 

h -2.111 3.1500 

Then, the feedback gain matrix / (  is calculated 
using the obtained matrices p and _F'a by 

and therefore the closed-loop system 

o ,  !] 
A + B K =  - 6  - 5  

14.78053.3902 - 

which has the exact desired spectrum A. The 
normalized achievable left modal matrix ~2 ~ is 
obtained by 

0.9487 0.8944 --0.9216 

r176 L-0.: 1620.447200.2021 ] , 0  

which satisfies the normalized desired left modal 
matrix ~flo~ in the least square sense. 

5. C o n c l u s i o n s  

An effective and disturbance suppressible con- 
troller can be designed by assigning a left eigen- 
structure of a system. However, the problem of 
left eigenstructure assignment via Sylvester equa- 
tion has not been solved directly because of the 
inherent structure of the Sylvester equation. In 
this note, a left eigenstructure assignment scheme 
via Sylvester equation has been proposed. The 
proposed left eigenstructure assignment scheme 
via Sylvester equation guarantees that the desired 
eigenvalues are achieved exactly and the desired 
left eigenvectors are assigned to the best possible 
(achievable) set of eigenvectors, at least, in the 
least square sense. Thus, the proposed scheme 
could be utilized in designing a disturbance sup- 
pressible as well as an effective controller because 
the directions of the assigned left eigenvectors 
govern the degrees of the control effectiveness and 
disturbance suppressibility of the system. A 
numerical example has confirmed the simplicity 
and usefulness of the proposed left eigenstructure 
assignment scheme via Sylvester equation. 
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